MATH 119: Final

Name: _____

Directions:

- * Show your thought process (commonly said as "show your work") when solving each problem for full credit.
- * If you do not know how to solve a problem, try your best and/or explain in English what you would do.
- * Good luck!

Problem	Score	Points
1		10
2		10
3		10
4		10
5		10
6		10
7		10
8		10
9		10
10		10
11		10
12		10

- 1. Short answer questions:
 - (a) Suppose you try distributing

$$(x + y)^2 z^2 = (xz^2 + yz^2)^2$$

Why is this incorrect?

(b) Suppose you cancel out the *x*'s to simplify

$$\frac{3+x}{x} = \frac{3+1}{1} = 4$$

Why is this incorrect?

(c) You try simplifying by distributing:

$$[(x-1)^2 + (x+1)]^3 = (x-1)^5 + (x+1)^3 = x^5 - 1^5 + x^3 + 1^3 = x^5 + x^3$$

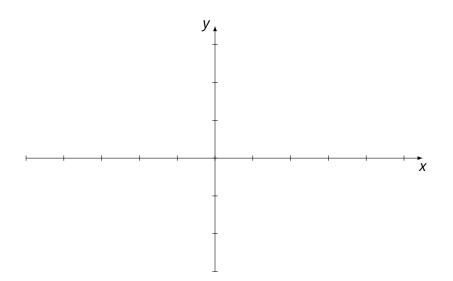
Circle the two types of mistakes you made and explain why they are mistakes.

2. Evaluate the following:

(a)
$$\sin\left(\frac{\pi}{3}\right)$$

(c)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

(d)
$$\tan\left(\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)\right)$$


(e)
$$\sin\left(\frac{5\pi}{2}\right)$$

(f) sin 75°

3. Given the function

$$f(x) = 1 + \cos(2x - 2\pi)$$

(a) Graph one period of f(x) using transformations.

(b) What is $f(\pi)$?

- 4. Suppose $f(x) = x x^2$
 - (a) A person tries to find f(x + h) by writing

$$f(x+h) = x - x^2 + h$$

This is wrong. What expression (involving f(x)) did the person actually write down?

(b) The person then tries again:

$$f(x+h) = x+h-x+h^2$$

Explain the reason why this is also incorrect.

(c) Your turn: Evaluate f(x + h) and fully simplify.

(d) In general, when you are substituting two or more terms into **(a)** a variable with a power or **(b)** that variable being subtracted, what do you need to not forget?

- 5. Solve the equation for θ . Check your work if necessary.
 - (a) $\sqrt{2}\sin\theta + 1 = 0$

(b) $\sin^2 \theta = 4 - 2 \cos^2 \theta$

6. Prove these identities algebraically:

(a)
$$\frac{\sin\theta}{\tan\theta} = \cos\theta$$

(b)
$$\frac{\cos x}{\sec x} + \frac{\sin x}{\csc x} = 1$$

(c)
$$\cos^4 x - \sin^4 x = \cos 2x$$

- 7. Answer the following:
 - (a) A triangle ABC has $\angle A = 90^{\circ}$, $\angle B = 30^{\circ}$ and A = 25. Solve the triangle and draw a picture of it.

(b) A sequoia tree casts a shadow 100 feet long. Find the height of the tree if the angle of elevation of the sun is 45°.

(c) Are $\frac{-\pi}{4}$ rad and 315° coterminal? Show with calculations.

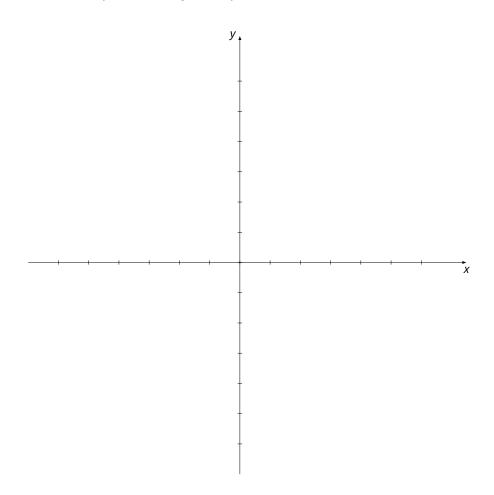
- 8. Answer the following:
 - (a) Convert $(\sqrt{8},\sqrt{8})$ into polar coordinates.

(b) Convert $r = \frac{1}{1 + \sin \theta}$ into rectangular form.

(c) Convert $r = 6 \cos \theta$ into rectangular form.

- 9. Answer the following:
 - (a) Write 1 + i in polar form.

(b) Evaluate
$$\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^{12}$$


- 10. Simplify the following trigonometric expressions:
 - (a) $\sin 20^\circ \cos 40^\circ + \cos 20^\circ \sin 40^\circ$

(b)
$$\frac{\sin(x+y) - \sin(x-y)}{\cos(x+y) + \cos(x-y)}$$

11. Here is a pair of parametric equations

$$x = 2t$$
 $y = t + 2$

(a) Sketch the curve represented by the equations.

(b) Find a rectangular coordinate equation for the curve by eliminating the parameter.

- 12. Answer the following. Do not leave negative exponents.
 - (a) Simplify

$$\frac{1}{x-1} + \frac{1}{x+1} - \frac{2}{x}$$

(b) Simplify

 $x^2 y \left(\frac{x+1}{y}\right)^{-2} \left(\sqrt{\frac{x}{y}}\right)^4$

(c) If

$$f(x) = x^2 + 1$$
 $g(x) = 2x^3$ $h(x) = 2x - 1$ $k(x) = 6x^2$

fully expand and simplify the following expressions:

i. f(x)g(x) + h(x)k(x)

ii. $\frac{g(x)f(x) - k(x)h(x)}{[k(x)]^2}$